[<u>e</u>]-AZOXYBIS(METHYLENE) BIS(3-CHLOROBENZOATE): POTENT MUTAGEN FROM REACTION OF HEXAMETHYLPHOS-PHORAMIDE, N-METHYLHYDROXYLAMINE AND [<u>e</u>]-NITROSOMETHANE DIMER WITH 3-CHLOROPEROXYBENZOIC ACID

Ella C. Kimmel, Ian Holden^{*}, Yoffi Segall^a, and John E. Casida Pesticide Chemistry and Toxicology Laboratory, Department of Entomological Sciences University of California, Berkeley, California 94720

<u>Summary</u>. [<u>E</u>]-Azoxybis(methylene) bis(3-chlorobenzoate), an exceptionally potent mutagen (3050 revertants/nmol) in the <u>Salmonella typhimurium</u> (strain TA100) assay, is formed in trace (< 1%) quantity via [<u>E</u>]-nitrosomethane dimer on treatment of hexamethylphosphoramide or <u>N</u>-methylhydroxylamine with 3-chloroperoxybenzoic acid.

We recently reported¹ that hexamethylphosphoramide (HMPA) ($\underline{1}, R = NMe_2$) and some analogs upon treatment with 3-chloroperoxybenzoic acid (CPBA) (3-5 equivalents) in acetone at 25°C undergo <u>N</u>-oxidation and rearrangement to the corresponding <u>P</u>-dimethylaminooxyphosphonous derivatives ($\underline{2}$). Further oxidation of $\underline{2}$ yields formaldehyde and [<u>E</u>]-nitrosomethane dimer ($\underline{3}$) as the major nonphosphorus-containing products. Similar oxidation of <u>N</u>-methylhydroxylamine ($\underline{4}$) also yields <u>3</u>. The reaction mixtures of $\underline{1}-\underline{4}$ and some related compounds with CPBA in acetone² possess high mutagenic activity in the <u>Salmonella typhimurium</u> mutagenesis assay³ which could not be attributed to any compounds on the major reaction pathway.¹ The nature of the mutagen in these peracid reactions was of interest since HMPA is a carcinogen and oxidatively-activated promutagen.⁴ We have now identified the mutagen (<u>5</u>) in these CPBA reaction mixtures (Scheme).

<u>Scheme</u>. Oxidation of dimethylphosphoramides (<u>1</u>) via <u>P</u>-dimethylaminooxyphosphonous derivatives (<u>2</u>) and [<u>E</u>]-nitrosomethane dimer (<u>3</u>) to [<u>E</u>]-azoxybis(methylene) bis(3-chlorobenzoate) (<u>5</u>). [0] = 3-chloroperoxybenzoic acid. Ar = 3-chlorophenyl.

Careful chromatography⁵ with fraction monitoring by mutagenesis assays^{3,6} revealed a single mutagen and led to near quantitative isolation of diester 5^7 from reaction mixtures of each of 1, 3 and 4 with CPBA in acetone as colorless plates (benzene/pentane), m.p. 124-126°C. Tentative identification of 5 was made by normal spectroscopic methods.⁸ In view of its exceptional biological activity, the structure of 5 was confirmed by X-ray crystallography.⁹

^aCurrent address: Israel Institute for Biological Research, Ness-Ziona, P.O.B. 19, 70450, Israel X-Ray Structure of 5

Pure 5 is a direct-acting mutagen with an activity of 3050 revertants/nmol, a potency rarely encountered and generally associated with highly active carcinogens.¹⁰ It is deactivated by the rat liver S9 fraction and on hydrolysis by butyrylcholinesterase, indicating that an intact ester linkage is required for activity. Clearly 5 is not the mutagen formed on HMPA bioactivation since it requires abiotic substituents for its formation. Speculation on the mutagenic mode of action of 5 might include hydrolysis/fragmentation to an alkylating species, cf cycasin analogs.¹¹ Clarification of these points requires synthetic routes to 1,4-disubstituted azoxymethanes.

<u>Acknowledgments</u>. Dr. F. J. Hollander, CHEXRAY facility, Department of Chemistry, University of California, Berkeley, performed the crystal structure analysis. This study was supported by National Institutes of Health Grant No. POl ES00049.

References and Notes

- 1. I. Holden, Y. Segall, E. C. Kimmel, and J. E. Casida, <u>Tetrahedron Lett.</u>, <u>23</u>, 5107 (1982).
- 2. Other compounds showing high mutagenic activity on CPBA oxidation for 2-48 hr in acetone at 25°C were: (Me₂N)₂P(0)OP(0)(NMe₂)₂; (Me₂N)₂P(0)Cl; Me₂NP(0)(OEt)₂; Me₂NP(0)(OPh)₂; Me₂NOP(0)(NMe₂)₂; Me₂NOP(0)(OEt)₂; MeNHP(0)(OEt)₂; Me₂NC(0)Cl; Me₂NSO₂NMe₂. Potent mutagens are formed with CPBA from the nonphosphorus-compounds <u>3</u> and <u>4</u> in acetone or methanol but from HMPA and Me₂NP(0)(OEt)₂ only in acetone. No mutagenic activity resulted on treatment of <u>3</u> with 3-chlorobenzoic acid or of MeN=N(0)Me or MeCO₂CH₂N=N(0)Me with CPBA in acetone.
- 3. B. N. Ames, J. McCann, and E. Yamasaki, Mutation Res. <u>31</u>, 347 (1975).
- J. A. Zapp, Jr., <u>Am. Ind. Hyg. Ass. J. <u>36</u>, 916 (1975); J. Ashby, J. A. Styles, and D. Paton, <u>Br. J. Cancer 38</u>, 418 (1978).
 </u>
- 5. Florisil column with hexane-dichloromethane then µPorasil HPLC with chloroform-acetonitrile.
- Reaction mixtures were quenched with dimethyl sulfoxide to destroy excess CPBA (bactericidal) prior to incubation with <u>S</u>. <u>typhimurium</u> (strain TA100).
- 7. Isolated yields of crystalline 5 were 0.3% from 1, 0.7% from 3, and 0.1% from 4.
- 8. $[M^{+}]$ 382.0123; calculated for $C_{16}H_{12}N_{2}O_{5}Cl_{2}$, 383.0122: ¹H NMR (250 MHz, CDCl₃), δ 7.3-8.2 (8H, m); 6.01 (2H, t, <u>J</u> 1.4 Hz); 5.77 (2H, t, <u>J</u> 1.4 Hz): v_{max} 1750 cm⁻¹.
- 9. The correct space group for this molecule is P2₁. Refinement within this space group, however, led to poor residuals, bad convergence, and inconsistent bond distances. Refinement in space group P2₁/c, with the unique oxygen atom disordered about the inversion center, led to a clean and rapid convergence (R 5.6% for 919 observed data, $(F_2 > 3\sigma(F^2))$). This latter space group, though technically wrong, gives a more consistent representation of the structure than does refinement in the (correct) space group P2₁.
- J. McCann, E. Choi, E. Yamasaki, and B. N. Ames, <u>Proc. Nat. Acad. Sci. USA 72</u>, 5135 (1975). Examples for the TA100 strain are (revertants/nmol): <u>N-methyl-N'-nitro-N-nitrosoguanidine (1375)</u>; 4-nitroquinoline-1-oxide (2906); aflatoxin B₁ (7057) (+S9).
- 11. M. H. Benn, P. Kazmaier, <u>J. Chem. Soc. Chem. Comm.</u>, 887 (1972). (Received in USA 14 April 1983)